翻訳と辞書
Words near each other
・ Spectral line ratios
・ Spectral line shape
・ Spectral mask
・ Spectral method
・ Spectral modeling synthesis
・ Spectral Mornings
・ Spectral music
・ Spectral mutability
・ Spectral network
・ Spectral noise logging
・ Spectral phase interferometry for direct electric-field reconstruction
・ Spectral power distribution
・ Spectral printing
・ Spectral purity
・ Spectral pygmy chameleon
Spectral radius
・ Spectral regrowth
・ Spectral rendering
・ Spectral resolution
・ Spectral risk measure
・ Spectral Sciences Incorporated
・ Spectral sensitivity
・ Spectral sequence
・ Spectral set
・ Spectral shape analysis
・ Spectral signal-to-noise ratio
・ Spectral signature
・ Spectral slope
・ Spectral Sound
・ Spectral space


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spectral radius : ウィキペディア英語版
Spectral radius
In mathematics, the spectral radius of a square matrix or a bounded linear operator is the supremum among the absolute values of the elements in its spectrum, which is sometimes denoted by ρ(·).
==Matrices==
Let be the (real or complex) eigenvalues of a matrix . Then its spectral radius is defined as:
:\rho(A) = \max \left \.
The following lemma shows a simple yet useful upper bound for the spectral radius of a matrix:
:Lemma. Let with spectral radius and a consistent matrix norm ; then, for each :
::\rho(A)\leq \|A^k\|^}.
''Proof'': Let be an eigenvector-eigenvalue pair for a matrix ''A''. By the sub-multiplicative property of the matrix norm, we get:
:|\lambda|^k\|\mathbf\| = \|\lambda^k \mathbf\| = \|A^k \mathbf\| \leq \|A^k\|\cdot\|\mathbf\|
and since we have
:|\lambda|^k \leq \|A^k\|
and therefore
:\rho(A)\leq \|A^k\|^}.
The spectral radius is closely related to the behaviour of the convergence of the power sequence of a matrix; namely, the following theorem holds:
:Theorem. Let with spectral radius ; then if and only if
::\lim_ A^k = 0.
:Moreover, if , is not bounded for increasing values of .
''Proof.'' Assume the limit in question is zero, we will show that . Let be an eigenvector-eigenvalue pair for ''A''. Since we have:
:\begin
0 &= \left(\lim_ A^k \right) \mathbf \\
&= \lim_ \left(A^k\mathbf \right ) \\
&= \lim_ \lambda^k\mathbf \\
&= \mathbf \lim_ \lambda^k
\end
and, since by hypothesis , we must have
:\lim_\lambda^k = 0
which implies |λ| < 1. Since this must be true for any eigenvalue λ, we can conclude ρ(''A'') < 1.
Now assume the radius of is less than . From the Jordan normal form theorem, we know that for all , there exist with non-singular and block diagonal such that:
:A = VJV^
with
:J=\begin
J_(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & J_(\lambda_2) & 0 & \cdots & 0 \\
\vdots & \cdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_) & 0 \\
0 & \cdots & \cdots & 0 & J_(\lambda_s)
\end
where
:J_(\lambda_i)=\begin
\lambda_i & 1 & 0 & \cdots & 0 \\
0 & \lambda_i & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_i & 1 \\
0 & 0 & \cdots & 0 & \lambda_i
\end\in \mathbf^, 1\leq i\leq s.
It is easy to see that
:A^k=VJ^kV^
and, since is block-diagonal,
:J^k=\begin
J_^k(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & J_^k(\lambda_2) & 0 & \cdots & 0 \\
\vdots & \cdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_) & 0 \\
0 & \cdots & \cdots & 0 & J_^k(\lambda_s)
\end
Now, a standard result on the -power of an m_i \times m_i Jordan block states that, for k \geq m_i-1:
:J_^k(\lambda_i)=\begin
\lambda_i^k & \lambda_i^ & \lambda_i^ & \cdots & \lambda_i^ \\
0 & \lambda_i^k & \lambda_i^ & \cdots & \lambda_i^ \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_i^k & \lambda_i^ \\
0 & 0 & \cdots & 0 & \lambda_i^k
\end
Thus, if \rho(A) < 1 then for all |\lambda_i| < 1. Hence for all we have:
:\lim_J_^k=0
which implies
:\lim_ J^k = 0.
Therefore,
:\lim_A^k=\lim_VJ^kV^=V \left (\lim_J^k \right )V^=0
On the other side, if \rho(A)>1, there is at least one element in which doesn't remain bounded as k increases, so proving the second part of the statement.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spectral radius」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.